Imaging and physiology summit 2014 Detection of Angioscopically-detected Yellow Plaque by Near-Infrared Spectroscopy (NIRS)

Yasunori Ueda, MD, PhD, FACC, FESC, FJCC Director, Cardiovascular Division Osaka Police Hospital Clinical Professor, Cardiovascular Medicine Osaka University Graduate School of Medicine

N00

Angioscopy yellow color grade vs. NIRS LCBI

Culprit lesions of ACS

Culprit lesion of unstable angina = Yellow plaque

Culprit lesion of acute MI = Yellow plaque

Osaka Police Hospital 🔊

Ueda et al. J Invasive Cardiol. 2006

Culprit lesions of ACS by angioscopy = Yellow plaque

Plaque Rupture & Non-rupture (Erosion) = Yellow plaque

Osaka Police Hospital 🔊

Sanidas et al. Am J Cardiol. 2011

Plaque Rupture & Non-rupture (Erosion) = Yellow plaque

Proxima

TCFA

Similar VH findings between

Non-Ruptured plaque

TCFAB

Osaka Police Hospital

NO19

ruptured and non-ruptured plaques

А

Sanidas et al. Am J Cardiol. 2011

Culprit lesions of acute MI by NIRS

J Am Coll Cardiol Intv. 2013;6(8):838-846

Osaka Folice nospital 📢 🄊

Culprit lesions of acute MI by NIRS

J Am Coll Cardiol Intv. 2013;6(8):838-846

Regression of yellow plaque by statin

Regression of yellow plaque by statin therapy After 80 weeks Before Atorvastatin (10mg/day)

1 $\overline{\mathbf{2}}$ 2 (2)(1)4 $(\mathbf{3})$ 4 3 Osaka Police Hospital NO 19

Okada and Ueda et al. J Interven Cardiol, 2007

Hirayama A et al. Circ J, 2009

Kini et al. J Am Coll Cardiol 2013;62:21–9

Usaкa Police Hospital

YELLOW trial

	Standard	Intensive	
	(n = 34)	(n = 36)	p Value
Baseline, median (IQR)			
LCBI _{4mm} max	356.7 (145.2 to 509.2)	490.6 (363.8 to 689.7)	0.01
LCBI, lesion	95.4 (29.6 to 174.6)	132.4 (99.0 to 201.2)	0.04
Follow-up, median (IQR)			
LCBI4mm max	385.7 (139.2 to 510.9)	336.1 (252.3 to 479.9)	0.93
LCBI, lesion	99.9 (38.2 to 204.3)	99.8 (64.2 to 159.3)	0.88
Median change (95% CI)†			
LCBI _{4mm} max	2.4 (-36.1 to 44.7)	-149.1 (-210.9 to -42.9)	0.01
LCBI, lesion	8.0 (-7.7 to 22.1)	-22.5 (-59.2 to -3.5)	0.02
Median percent change (95% CI)			
LCBI _{4mm} max	-0.6 (-22.0 to 12.4)	-32.2 (-40.4 to -12.4)	0.02
LCBI, lesion	5.4 (-19.6 to 34.1)	-24.4 (-43.6 to -2.0)	0.03
Any LCBI regression, %			
LCBI _{4mm} max	50.0	80.6	0.01
LCBI lesion	44.1	69.4	0.03

*Table includes LCBI comparisons for study participants with values at both baseline and staged time points (n = 70). †p Values from analysis of covariance models on rank-transformed data controlling for baseline LCBI. All confidence intervals (CI) are distribution free.

IQR = interquartile range; LCBI_{4mm} max = lipid-core burden index at the 4-mm maximal segment.

Kini et al. J Am Coll Cardiol 2013;62:21–9

YELLOW trial

Kini et al. J Am Coll Cardiol 2013;62:21–9

Prediction of slow/ no flow and periprocedural MI

Ruptured yellow plaque = Risk of distal embolization/ slow flow phenomenon

Ruptured plaque

Plaque debris embolization

Mizote and Ueda et al. Circulation. 2005

Ruptured yellow plaque = Risk of distal embolization/ slow flow phenomenon (%) Acute MI patients

Mizote and Ueda et al. Circulation. 2005

25

Matsuo and Ueda et al. Eurointervention. 2013

NIRS: $_{max}LCBI_{4 mm} \ge 500$

Periprocedural MI occurred in 7 of 14 patients (50%) with a $_{max}LCBI_{4 mm} \ge 500$, compared with 2 of 48 patients (4.2%) patients with a lower $_{max}LCBI_{4 mm}$ (P=0.0002).

Circulation: Cardiovascular Interventions. 2011; 4: 429-437

A case of slow flow/ periprocedural MI A 41-year-old male patient with silent myocardial ischemia

Ueda et al. J Cardiol Cases. 2014

Filter: Filter 4

Examination by angioscopy

Ueda et al. J Cardiol Cases. 2014

NIRS-IVUS Examination by NIRS-IVUS

Ueda et al. J Cardiol Cases. 2014 Osaka Police Hospital

NO (7)

Ueda et al. J Cardiol Cases. 2014

Ueda et al. J Cardiol Cases. 2014

Post Stenting

 Distal protection with Filtrap
 Predilatation
 Stent implantation with Xience Prime 3.5x23mm + 3.0x38mm

No-flow +

Ueda et al. J Cardiol Cases. 2014

Filter Removal

Final

peak CK 1500 U/L (CKMB 130 U/L)

Ueda et al. J Cardiol Cases. 2014 Nicorandil ic

Distal protection device (*Filtrap*) was filled with embolized plaque debris.

Ueda et al. J Cardiol Cases. 2014

Prediction of vulnerable plaques/ patients

Vulnerable Plaque = Yellow plaque

Incidence of plaque disruption

Vulnerable patient = *Multiple yellow plaques*

Asakura and Ueda et al. J Am Coll Cardiol. 2001

Number of yellow plaques and future ACS event

Number of yellow plaques and future ACS event

Ohtani and Ueda et al. J Am Coll Cardiol. 2006

NO 19 Osaka Police Hospital

The Lipid Rich Plaque (LRP) study to identify vulnerable patients and vulnerable plaques

Dr. Ron Waksman, Pl Pl, Europe, Dr. Carlo di Mario Pl, Japan, Dr. Takeshi Akasaka <u>Co-Pl, Japan, Dr. Yasunori Ueda</u>

In an innovative design, only 50% of the patients without a large lipid-rich plaque will be followed

Angioscopy plays a role of macroscopic pathology in living patients

 $_{max}LCBI_{4 mm} = 1000$

Yellow plaquePlaque rupture

Prot
Thrc
Ster
Neo
NiRS can detect angioscopically-detected
yellow plaques very well and can evaluate
them more quantitatively.